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1 Introduction

Here we will consider several consequences of the theorems discussed in the last several lectures.
As before, we are interested in elliptic operators L given by

Lu = Di(a
ijDju+ biu) + cjDju+ du in Ω, (1)

where Ω is a domain, u ∈ W 1,2(Ω), and the coefficients aij ∈ L∞(Ω), bi, ci ∈ Lq(Ω), and d ∈ Lq(Ω)
satisfy

aij(x)ξiξj ≥ λ|ξ|2 for a.e. x ∈ Ω and ξ ∈ Rn (2)

for λ > 0 and

n∑
i,j=1

|aij(x)|2 ≤ Λ2 a.e. in Ω, λ−2

n∑
i,j=1

(‖bi‖2
Lq(Ω) + ‖ci‖2

Lq(Ω)) + λ−1‖d‖Lq/2(Ω) ≤ ν2. (3)

Recall we showed that:

Theorem 1. Let L satisfy (2) and (3) and suppose f i ∈ Lq(Ω) and g ∈ Lq/2(Ω) for q > n. Then
if u ∈ W 1,2(Ω) satisfies u ≥ 0 and

Lu ≥ Dif
i + g weakly in Ω,

then for any ball B2R(x0) ⊂ Ω and p > 1,

sup
BR(x0)

u ≤ C(R−n/p‖u‖Lp(B2R(x0)) + λ−1R1−n/q‖f‖Lq(B2R(x0)) + λ−1R2−2n/q‖g‖Lq/2(B2R(x0)))

for C = C(n,Λ/λ, νR, q, p) > 0.

Theorem 2 (Weak Harnack inequality). Let L satisfy (2) and (3) and suppose f i ∈ Lq(Ω) and
g ∈ Lq/2(Ω) for q > n. Then if u ∈ W 1,2(Ω) satisfies u ≥ 0 and

Lu ≤ Dif
i + g weakly in Ω,

then for any ball B4R(x0) ⊂ Ω and 1 ≤ p < n/(n− 2),

R−n/p‖u‖Lp(B2R(x0)) ≤ C( inf
BR(x0)

u+ λ−1R1−n/q‖f‖Lq(B2R(x0) + λ−1R2−2n/q‖g‖Lq/2(B2R(x0)))

for C = C(n,Λ/λ, νR, q, p) > 0.
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Some important consequence of Theorems 1 and 2 are

1. Harnack inequality.

2. Strong maximum principle for equations in divergence form,

3. Theorem 1 holds without the assumption u ≥ 0,

4. Estimate on the Hölder continuity of solutions.

5. Estimate on modulus of continuity at the boundary.

The Harnack inequality was discussed in the previous lectures. We will discuss the Hölder conti-
nuity estimates in lecture. For the other applications, we will state the theorems precisely below
and the proofs may be covered in future example sheets.

2 Strong maximum principles

Theorem 3 (Strong maximum principle). Let Ω be an connected open set in Rn. Let L be as in
(1) such that (2) and (3) hold. Suppose u ∈ W 1,2(Ω) such that

Lu ≥ 0 weakly in Ω.

(a) If bi = d = 0 a.e. in Ω, then there is no ball B ⊂⊂ Ω such that

sup
B
u = sup

Ω
u (4)

unless u is constant on Ω.

(b) If bi and d satisfy ∫
Ω

(−biDiζ + dζ) ≤ 0 (5)

for all ζ ∈ W 1,1
0 (Ω) with ζ ≥ 0 and supΩ u ≥ 0, then there is no ball B ⊂⊂ Ω such that (4)

holds unless u is constant on Ω.

(c) Without any restrictions on bi and d, if supΩ u = 0, then there is no ball B ⊂⊂ Ω such that
(4) holds unless u is constant on Ω.

Note that if u ∈ W 1,2(Ω), then it makes no sense to talk about u having an interior maximum
at a point in Ω since u is only defined up to a set of Lebesgue measure zero. Thus instead we say
u attains an interior maximum if (4) holds true. Of course, if u were also a continuous function,
(4) is equivalent to u attaining its maximum value at a point in the interior of Ω.
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3 Theorem 1 without u ≥ 0

Theorem 4. Let L be as in (1) such that (2) and (3) hold. Suppose f i ∈ Lq(Ω) and g ∈ Lq/2(Ω)
for q > n. Then if u ∈ W 1,2(Ω) with no sign restriction satisfies

Lu ≥ Dif
i + g weakly in Ω,

then for any ball B2R(x0) ⊂ Ω and p > 1,

sup
BR(x0)

u ≤ C(R−n/p‖u‖Lp(B2R(x0)) + λ−1R1−n/q‖f‖Lq(B2R(x0)) + λ−1R2−2n/q‖g‖Lq/2(B2R(x0)))

for C = C(n,Λ/λ, νR, q, p) ∈ (0,∞).

4 Continuity estimates

Now we want to show that solutions u ∈ W 1,2(Ω) to a weak equation in divergence form is in fact
in C0,µ(Ω) for some µ ∈ (0, 1) with estimates on [u]µ,Ω′ , Ω′ ⊂⊂ Ω. This is particularly important
for the study of quasilinear elliptic equations.

Theorem 5. Let L be as in (1) such that (2) and (3) hold. Suppose f i ∈ Lq(Ω) and g ∈ Lq/2(Ω)
for q > n. Then if u ∈ W 1,2(Ω) satisfies

Lu = Dif
i + g weakly in Ω,

then for any ball BR0(x0) ⊂ Ω and R ≤ R0,

oscBR(x0) u ≤ C

(
R

R0

)µ(
oscBR0

(x0) u+
C

λ
(R

1−n/q
0 ‖f‖Lq(Ω) +R

2−2n/q
0 ‖g‖Lq/2(Ω))

)
(6)

for µ ∈ (0, 1) and C ∈ (0,∞) depending on n, Λ/λ, νR0, and q, where

oscBR(x0) u = sup
BR(x0)

u− inf
BR(x0)

u

Proof. We may assume WLOG that R ≤ R0/4. Let M0 = supBR0
(x0) |u|, m1 = infBR(x0) u,

M1 = supBR(x0) u, m4 = infB4R(x0) u, and M4 = supB4R(x0) u. Then M4 − u and u − m4 are
nonnegative functions on B4R(x0) satisfying

L(M4 − u) = M4(Dib
i + d)−Dif

i − g,
L(u−m4) = −m4(Dib

i + d) +Dif
i + g.

Let

k(R) = λ−1R1−n/q(‖f‖Lq(BR0
(x0)) +M0‖b‖Lq(BR0

(x0)))

+ λ−1R2−2n/q(‖g‖Lq/2(BR0
(x0)) +M0‖d‖Lq/2(BR0

(x0)))

3



By the weak Harnack inequality applied to M4 − u and u−m4 with p = 1,

R−n
∫
B2R(x0)

(M4 − u) ≤ C(M4 −M1 + k(R)),

R−n
∫
B2R(x0)

(u−m4) ≤ C(m1 −m4 + k(R)),

for some constant C ∈ (1,∞). By addition,

M4 −m4 ≤ C(M4 −m4 −M1 +m1 + k(R));

that is
oscBR(x0) u ≤ γ oscB4R(x0) u+ k(R) (7)

where γ = 1− 1/C ∈ (0, 1) depends on n, Λ/λ, νR0, and q.
Observe that (7) implies that as we decrease the radius of a ball by a factor of 4, the the

oscillation of u decays by a small factor of γ. Inequalities such as this are common in differential
equations and geometric analysis. The standard thing to do now is to iterate the inequality (7),
which in this case will establish (6). Let R1 ≤ R0. Iterating (7) with R = 4−mR1 for m = 1, 2, 3, . . .
we obtain

oscB4−mR1
(x0) u ≤ γm oscBR1

(x0) u+
m−1∑
i=0

γik(R1)

≤ γm oscBR1
(x0) u+

1

1− γ
k(R1).

Now consider any radius R ≤ R1 and choose an integer m ≥ 1 such that 4−m−1R1 < R ≤ 4−mR1

to get

oscBR(x0) u ≤ oscB4−mR1
(x0) u

≤ γm oscBR1
(x0) u+

1

1− γ
k(R1)

≤ 1

γ

(
R

R1

)− log γ/ log 4

oscBR0
(x0) u+

1

1− γ
k(R1).

Let R1 = R1−τ
0 Rτ for τ ∈ (0, 1). Then

oscBR(x0) u ≤
1

γ

(
R

R0

)−(1−τ) log γ/ log 4

oscBR0
(x0) u+

1

1− γ
k(R1−τ

0 Rτ )

≤ 1

γ

(
R

R0

)−(1−τ) log γ/ log 4

oscBR0
(x0) u+

1

1− γ

(
R

R0

)τ(1−n/q)

k(R0).

Choose τ such that −(1 − τ) log γ/ log 4 < τ(1 − n/q) and choose µ = −(1 − τ) log γ/ log 4 ∈
(0, 1).

As an immediate consequence of the above, we obtain:
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Corollary 1. Let L be as in (1) such that (2) and (3) hold. Suppose f i ∈ Lq(Ω) and g ∈ Lq/2(Ω)
for q > n. Then if u ∈ W 1,2(Ω) satisfies

Lu = Dif
i + g weakly in Ω,

then u ∈ C0,µ(Ω) and for any BR0(x0) ⊂⊂ Ω,

Rµ
0 [u]µ,BR0/4

(x0) ≤ C( sup
BR0

(x0)

|u|+ λ−1(R
1−n/q
0 ‖f‖Lq(Ω) +R

2−2n/q
0 ‖g‖Lq/2(Ω)))

for µ ∈ (0, 1) and C ∈ (0,∞) depending on n, Λ/λ, νR0, q, and d = dist(Ω′, ∂Ω).

Proof. Let x, y ∈ BR0/4(x0) and let R = |x− y|. Then

|u(x)− u(y)|
|x− y|µ

≤ R−µ oscBR(x) u

≤ CR−µ0 (oscBR0
(x0) u+ λ−1(R

1−n/q
0 ‖f‖Lq(Ω) +R

2−2n/q
0 ‖g‖Lq/2(Ω)))

≤ CR−µ0 ( sup
BR0

(x0)

|u|+ λ−1(R
1−n/q
0 ‖f‖Lq(Ω) +R

2−2n/q
0 ‖g‖Lq/2(Ω))).

Note that by the interpolation inequality

sup
BR0

(x0)

|u| ≤ C‖u‖L2(BR0
(x0)) + ε[u]µ,BR0

(x0)

for C = C(ε, n, µ) ∈ (0,∞) (left as an exercise), we obtain

Rµ
0 [u]µ,BR0/4

(x0) ≤ C(‖u‖L2(BR0
(x0)) + λ−1(R

1−n/q
0 ‖f‖Lq(Ω) +R

2−2n/q
0 ‖g‖Lq/2(Ω))) (8)

for some constant C ∈ (0,∞) depending on n, Λ/λ, νR0, q, and d = dist(Ω′, ∂Ω). Alternatively,
(8) follows from Theorem 1. Given Ω′ ⊂⊂ Ω, we can cover Ω′ by balls BRj/4(xj) for xj ∈ Ω and
Rj < d = dist(Ω′, ∂Ω) to get

[u]µ,Ω′ ≤ C(‖u‖L2(Ω) + λ−1(‖f‖Lq(Ω) + ‖g‖Lq/2(Ω))).

for µ ∈ (0, 1) and C ∈ (0,∞) depending on n, Λ/λ, νR0, q, and d = dist(Ω′, ∂Ω).

5 Continuity estimates at the boundary

Finally we want to obtain continuity estimates at the boundary of Ω. First we have the following:

Theorem 6. Let L satisfy (2) and (3) and suppose f i ∈ Lq(Ω) and g ∈ Lq/2(Ω) for q > n. Then
if u ∈ W 1,2(Ω) satisfies u ≥ 0 in Ω ∩B4R(x0) and

Lu ≤ Dif
i + g weakly in Ω,

then for any ball B4R(x0) ⊂ Rn and 1 ≤ p < n/(n− 2),

R−n/p‖u−m‖Lp(B2R(x0)) ≤ C( inf
BR(x0)

u−m + λ−1R1−n/q‖f‖Lq(B2R(x0) + λ−1R2−2n/q‖g‖Lq/2(B2R(x0)))

for C = C(n,Λ/λ, νR, q, p) > 0, where m = inf∂Ω∩B4R(x0) u and

u−m(x) =

{
min{u(x),m} if x ∈ Ω,
m if x 6∈ Ω.
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Proof. Modify the proof of the weak Harnack inequality, letting ū = u−m + k and using the test
function ζ = η2(ūβ − (M + k)β) for M = sup∂Ω∩B2R(x0) u

+ if β > 0 and ζ = η2(ūβ − (m + k)β) if

β < 0 and noting that ζ ≤ η2ūβ.

Theorem 7. Suppose L be as in (1) such that (2) and (3) hold. Suppose f i ∈ Lq(Ω) and g ∈
Lq/2(Ω) for q > n. Suppose u ∈ W 1,2(Ω) satisfies

Lu = Dif
i + g weakly in Ω.

Finally, suppose Ω satisfies the exterior cone condition at ξ ∈ ∂Ω, i.e. there exists a finite right
circular cone Vξ with vertex ξ such that Ω ∩ Vξ = {ξ} (for example, if Ω is a C0,1 domain). Then
for any 0 < R ≤ R0,

oscΩ∩BR(ξ) u ≤ C

(
R

R0

)µ(
sup
BR0

(ξ)

|u|+ C

λ
(R

1−n/q
0 ‖f‖Lq(Ω) +R

2−2n/q
0 ‖g‖Lq/2(Ω))

)
+osc∂Ω∩B√

RR0
(ξ) u.

(9)
for µ ∈ (0, 1) and C > 0 depending on n, Λ/λ, νR0, q, and Vξ.

Proof. We follow the proof of Theorem 1. We may assume WLOG that R is less than or equal to
both R0/4 and the height of Vξ. Let M0 = supΩ∩BR0

(ξ) |u|, m1 = infΩ∩BR(ξ) u, M1 = supΩ∩BR(ξ) u,
m4 = infΩ∩B4R(ξ) u, and M4 = supΩ∩B4R(ξ) u. By Theorem 6 applied to M4 − u and u −m4 with
p = 1,

(M4 −M)
|B2R(ξ) \ Ω|

Rn
≤ R−n

∫
B2R(ξ)

(M4 − u)−M4−M ≤ C(M4 −M1 + k(R)),

(m−m4)
|B2R(ξ) \ Ω|

Rn
≤ R−n

∫
B2R(ξ)

(u−m4)−m−m4
≤ C(m1 −m4 + k(R)),

for some constant C ∈ (1,∞). By the exterior cone condition,

(M4 −M) ≤ C(M4 −M1 + k(R)),

(m−m4) ≤ C(m1 −m4 + k(R)).

By addition,
M4 −m4 −M +m ≤ C(M4 −m4 −M1 +m1 + k(R)).

that is
oscBR(x0) u ≤ γ oscB4R(x0) u+ k(R) + osc∂Ω∩BR(ξ) u

where γ = 1− 1/C ∈ (0, 1) depends on n, Λ/λ, νR0, and q. (9) follows.

Corollary 2. Let Ω be a domain in Rn that satisfies the exterior cone condition at each ξ ∈ ∂Ω.
Let L be as in (1) such that (2) and (3) hold. Suppose f i ∈ Lq(Ω) and g ∈ Lq/2(Ω) for q > n and
ϕ ∈ W 1,2(Ω) ∩ C0(Ω). Suppose u ∈ W 1,2(Ω) satisfies

Lu = Dif
i + g weakly in Ω,

u = ϕ on ∂Ω.

Then u ∈ C0(Ω) with u = ϕ pointwise on Ω.
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Corollary 3. Let Ω be a domain in Rn that satisfies the exterior cone condition at each ξ ∈ ∂Ω.
Let L be as in (1) such that (2), (3), and (5) hold. Suppose f i ∈ Lq(Ω) and g ∈ Lq/2(Ω) for q > n
and ϕ ∈ C0(∂Ω). Then there is a unique u ∈ W 1,2(Ω) ∩ C0(Ω) such that

Lu = Dif
i + g weakly in Ω,

u = ϕ pointwise on ∂Ω.
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